Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
Phytomedicine ; 125: 155389, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306720

RESUMO

BACKGROUND: Acanthamoeba is an opportunistic pathogen that can cause human infections such as granulomatous amebic encephalitis and acanthamoeba keratitis. However, no specific drug to treat the diseases has been developed. Therefore, the discovery or development of novel drugs for treating Acanthamoeba infections is urgently needed. The anti-protozoan activity of (‒)-epicatechin (EC) has been reported, suggesting it is an attractive anti-protozoal drug candidate. In this study, the amoebicidal activity of EC against A. castellanii was assessed and its mechanism of action was unveiled. METHODS: The amoebicidal activity of EC against A. castellanii trophozoites and the cytotoxicity of EC in HCE-2 and C6 cells were determined with cell viability assay. The underlying amoebicidal mechanism of EC against A. castellanii was analyzed by the apoptosis/necrosis assay, TUNEL assay, mitochondrial dysfunction assay, caspase-3 assay, and quantitative reverse transcription polymerase chain reaction. The cysticidal activity of EC was also investigated. RESULTS: EC revealed amoebicidal activity against A. castellanii trophozoites with an IC50 of 37.01 ± 3.96 µM, but was not cytotoxic to HCE-2 or C6 cells. EC induced apoptotic events such as increases in DNA fragmentation and intracellular reactive oxygen species production in A. castellanii. EC also caused mitochondrial dysfunction in the amoebae, as evidenced by the loss of mitochondrial membrane potential and reductions in ATP production. Caspase-3 activity, autophagosome formation, and the expression levels of autophagy-related genes were also increased in EC-treated amoebae. EC led to the partial death of cysts and the inhibition of excystation. CONCLUSION: EC revealed promising amoebicidal activity against A. castellanii trophozoites via programmed cell death events. EC could be a candidate drug or supplemental compound for treating Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii , Amebíase , Amebicidas , Catequina , Dieldrin/análogos & derivados , Doenças Mitocondriais , Animais , Humanos , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Caspase 3 , Catequina/farmacologia , Amebíase/tratamento farmacológico , Trofozoítos , Apoptose , Doenças Mitocondriais/tratamento farmacológico
2.
Medicine (Baltimore) ; 103(6): e37195, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335414

RESUMO

RATIONALE: Amebic colitis has been less prevalent in recent times in China, and the similarity of its symptoms to those of inflammatory bowel disease (IBD) results in the difficulty of early identification and diagnosis. PATIENT CONCERNS: A 31-year-old male who exhibited intermittent diarrhea and hematochezia was highly suspected as IBD initially. Despite the partial relief of symptoms following the administration of mesalamine, the endoscopic ulcers remained largely unchanged. DIAGNOSES: Two years after the onset of mesalamine therapy, amebic cysts were detected in stool microscopy and trophozoites were found on the surface of cecal ulcers. The patient was then diagnosed with amebic colitis. INTERVENTIONS: After 2 rounds of standardized metronidazole treatment, amebic colitis remained refractory until diloxanide was administered. OUTCOMES: The patient remained asymptomatic, and the mucosa of colon was normal during the annual follow-up. LESSONS: Individuals newly diagnosed with IBD should undergo essential screening for amebiasis. And the use of steroids should be taken with caution, especially in cases where the effect of mesalamine is limited. For symptomatic intestinal amebiasis, even after the administration of tissue amebicides, the continued use of luminal amebicides is necessary to prevent recurrence.


Assuntos
Amebicidas , Disenteria Amebiana , Doenças Inflamatórias Intestinais , Masculino , Humanos , Adulto , Disenteria Amebiana/diagnóstico , Disenteria Amebiana/tratamento farmacológico , Amebicidas/uso terapêutico , Mesalamina/uso terapêutico , Úlcera/tratamento farmacológico , Diagnóstico Diferencial , Doenças Inflamatórias Intestinais/diagnóstico
3.
Acta Trop ; 246: 106986, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453579

RESUMO

Treatment of visceral leishmaniasis (VL) is compromised by drug toxicity, high cost and/or the emergence of resistant strains. Though canine vaccines are available, there are no licensed prophylactic human vaccines. One strategy to improve clinical outcome for infected patients is immunotherapy, which associates a chemotherapy that acts directly to reduce parasitism and the administration of an immunogen-adjuvant that activates the host protective Th1-type immune response. In this study, we evaluated an immunotherapy protocol in a murine model by combining recombinant (r)LiHyp1 (a hypothetical amastigote-specific Leishmania protein protective against Leishmania infantum infection), with monophosphoryl-lipid A (MPLA) as adjuvant and amphotericin B (AmpB) as reference antileishmanial drug. We used this protocol to treat L. infantum infected-BALB/c mice, and parasitological, immunological and toxicological evaluations were performed at 1 and 30 days after treatment. Results showed that mice treated with rLiHyp1/MPLA/AmpB presented the lowest parasite burden in all organs evaluated, when both a limiting dilution technique and qPCR were used. In addition, these animals produced higher levels of IFN-γ and IL-12 cytokines and IgG2a isotype antibody, which were associated with lower production of IL-4 and IL-10 and IgG1 isotype. Furthermore, low levels of renal and hepatic damage markers were found in animals treated with rLiHyp1/MPLA/AmpB possibly reflecting the lower parasite load, as compared to the other groups. We conclude that the rLiHyp1/MPLA/AmpB combination could be considered in future studies as an immunotherapy protocol to treat against VL.


Assuntos
Adjuvantes Imunológicos , Amebicidas , Anfotericina B , Leishmaniose Visceral , Lipídeo A , Proteínas de Protozoários , Leishmaniose Visceral/terapia , Animais , Camundongos , Anfotericina B/uso terapêutico , Amebicidas/uso terapêutico , Imunoterapia , Adjuvantes Imunológicos/uso terapêutico , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Proteínas Recombinantes/uso terapêutico , Proteínas de Protozoários/uso terapêutico , Quimioterapia Combinada , Lipídeo A/uso terapêutico , Protocolos Clínicos , Feminino
4.
PLoS One ; 18(2): e0281141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36745609

RESUMO

As the number of contact lens users increases, contact lens induced corneal infection is becoming more common. Acanthamoeba keratitis (AK) is a type of those which is caused by Acanthamoeba species, and may cause severe ocular inflammation and visual loss. We evaluated whether Torreya nucifera (T. nucifera) extract has an anti-amoebic effect and studied its mechanism of action on Acanthamoeba lugdunensis (A. lugdunensis). Cell viability was tested using the alamarBlue™ method, and the cell death mechanism was confirmed using the Tali® Apoptosis Kit. The SYTOX® Green assay was performed to check the plasma membrane permeability. The JC-1 dye was used to measure the mitochondrial membrane potential. A CellTiter-Glo® Luminescent Assay was used to measure the adenosine-triphosphate (ATP) level. Morphological changes in the mitochondria were examined by transmission electron microscopy (TEM). Cystic changes and a decrease in cell viability after treatment with T. nucifera were observed. Both apoptotic and necrotic cells were found in the Tali® Apoptosis assay. There was no significant difference in plasma membrane permeability between the control and T. nucifera treated groups. The collapse of the mitochondrial membrane potential and reduced ATP level in A. lugdunensis was confirmed in the groups treated with T. nucifera. Structural damage to the mitochondria was observed on TEM in the groups treated with T. nucifera. T. nucifera showed an anti-amoebic effect on A. lugdunensis, by inducing the loss of mitochondrial membrane potential. Thus, it could be a future therapeutic agent for AK.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , Amebicidas , Humanos , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Ceratite por Acanthamoeba/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Extratos Vegetais/farmacologia
5.
Eur J Pharm Biopharm ; 180: 11-22, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162636

RESUMO

Statins are effective sterol lowering agents with high amoebicidal activity. Nevertheless, due to their poor aqueous solubility, they remain underused especially in eye drop formulation. The aim of the present study is to develop Pitavastatin loaded nanoparticles suitable for ophthalmic administration and designed for the management of Acanthamoeba Keratitis. These nanocarriers are aimed to solve both the ophthalmic route-associated problems and the limited aqueous drug solubility issues of Pitavastatin. Nanoparticles were obtained by a nanoprecipitation-solvent displacement method and their amoebicidal activity was evaluated against four strains of Acanthamoeba: A. castellanii Neff, A. polyphaga, A. griffini and A. quina. In Acanthamoeba polyphaga, the effect of the present nanoparticles was investigated with respect to the microtubule distribution and several programmed cell death features. Nanoparticles were able to eliminate all the tested strains and Acanthamoeba polyphaga was determined to be the most resistance strain. Nanoparticles induced chromatin condensation, autophagic vacuoles and mitochondria dysfunction.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , Amebicidas , Nanopartículas , Humanos , Ceratite por Acanthamoeba/tratamento farmacológico , Administração Oftálmica , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Morte Celular , Autofagia
6.
Mol Biochem Parasitol ; 250: 111493, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35753525

RESUMO

Acanthamoeba castellanii is a protist pathogen that can cause sight-threatening keratitis and a fatal infection of the central nervous system, known as granulomatous amoebic encephalitis. In this study, effects of five malonic acid and salicylic acid-based deep eutectic solvents (DES) on A. castellanii were investigated. These are salicylic acid-trioctylphosphine (DES 1), salicylic acid- trihexylamine (DES 2), salicylic acid-trioctylamine (DES 3), malonic acid-trioctylphosphine (DES 4) and malonic acid-trihexylamine (DES 5). The experiments were done by performing amoebicidal, encystment, excystment, cytopathogenicity, and cytotoxicity assays. At micromolar dosage, the solvents DES 2 and DES 3 displayed significant amoebicidal effects (P < 0.05), inhibited encystment and excystment, undermined the cell-mediated cytopathogenicity of A. castellanii, and also displayed minimal cytotoxicity to human cells. Conversely, the chemical components of these solvents: salicylic acid, trihexylamine, and trioctylamine showed minimal effects when tested individually. These results are very promising and to the best of our knowledge, are reported for the first time on the effects of deep eutectic solvents on amoebae. These results can be applied in the development of new formulations of novel contact lens disinfectants against Acanthamoeba castellanii.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebicidas , Lentes de Contato , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/prevenção & controle , Amebicidas/química , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Soluções para Lentes de Contato/farmacologia , Soluções para Lentes de Contato/uso terapêutico , Solventes Eutéticos Profundos , Humanos , Ácido Salicílico/farmacologia , Ácido Salicílico/uso terapêutico
7.
Mol Biochem Parasitol ; 250: 111492, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714753

RESUMO

Acanthamoeba is opportunistic pathogens that cause vision-threatening Acanthamoeba keratitis (AK). Previous studies proposed the use of chloroquine (CQ) and 5-fluorouracil (5FU) as anti-Acanthamoeba agents. The objective of this study was to determine the benefit of using 5FU and CQ nanoparticles (NP) formulations against A. castellanii that belonging to the T4 genotype and evaluate their anti-Acanthamoebic characteristic. Triplicate batches of 5FU nanoparticles (5FU-NP) were synthesized by using a modified nanoprecipitation method, while CQ nanoparticles (CQ-NP) synthesized using a modified double emulsion method. The synthesized nanoparticles were subjected to biological assays to investigate their amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects against A. castellanii, as well as cell cytotoxicity. Cytotoxicity assays were performed using human keratinocyte cells (HaCaT) to determine the effect of CQ and 5FU nanoformulations on host cells. 5FU-NP with a concentration of 60 µM showed significant inhibition to amoeba binding into human cell lines and remarkable prevention mainly during the encystation stage. Moreover, 5FU-NP resulted in less cytotoxicity and pathogenicity when compared with the free 5FU. On the other hand, CQ and CQ-NP, at the same concentration, showed poor inhibition to amoeba binding into human cells and insignificant prevention to encystation stage. Moderate human cells damage was resulted following their treatment with CQ and CQ-NP. In conclusion, 5FU may have the potential as an antiamoebic agent against Acanthamoeba spp. preferably as a nanoformulation to enhance its activity and reduce its cytoxicity.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebicidas , Nanopartículas , Ceratite por Acanthamoeba/tratamento farmacológico , Acanthamoeba castellanii/genética , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Cloroquina/farmacologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos
8.
Microbiol Spectr ; 10(3): e0007722, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35467370

RESUMO

Traditional cysticidal assays for Acanthamoeba species revolve around treating cysts with compounds and manually observing the culture for evidence of excystation. This method is time-consuming, labor-intensive, and low throughput. We adapted and trained a YOLOv3 machine learning, object detection neural network to recognize Acanthamoeba castellanii trophozoites and cysts in microscopy images to develop an automated cysticidal assay. This trained neural network was used to count trophozoites in wells treated with compounds of interest to determine if a compound treatment was cysticidal. We validated this new assay with known cysticidal and noncysticidal compounds. In addition, we undertook a large-scale bioluminescence-based screen of 9,286 structurally unique marine microbial metabolite fractions against the trophozoites of A. castellanii and identified 29 trophocidal hits. These hits were then subjected to this machine learning-based automated cysticidal assay. One marine microbial metabolite fraction was identified as both trophocidal and cysticidal. IMPORTANCE The free-living Acanthamoeba can exist as a trophozoite or cyst and both stages can cause painful blinding keratitis. Infection recurrence occurs in approximately 10% of cases due to the lack of efficient drugs that can kill both trophozoites and cysts. Therefore, the discovery of therapeutics that are effective against both stages is a critical unmet need to avert blindness. Current efforts to identify new anti-Acanthamoeba compounds rely primarily upon assays that target the trophozoite stage of the parasite. We adapted and trained a machine learning, object detection neural network to recognize Acanthamoeba trophozoites and cysts in microscopy images. Our machine learning-based cysticidal assay improved throughput, demonstrated high specificity, and had an exquisite ability to identify noncysticidal compounds. We combined this cysticidal assay with our bioluminescence-based trophocidal assay to screen about 9,000 structurally unique marine microbial metabolites against A. castellanii. Our screen identified a marine metabolite that was both trophocidal and cysticidal.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebicidas , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/parasitologia , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Animais , Aprendizado de Máquina , Trofozoítos
9.
Artigo em Inglês | MEDLINE | ID: mdl-33895610

RESUMO

The main corneal infections reported worldwide are caused by bacteria and viruses but, recently, the number of Acanthamoeba keratitis (AK) cases has increased. Acanthamoeba genus is an opportunistic free living protozoa widely distributed in environmental and clinical sources, with two life-cycle stages: the trophozoite and the cyst. AK presents as primary symptoms eye redness, epithelial defects, photophobia and intense pain. An early diagnosis and an effective treatment are crucial to avoid blindness or eye removal but, so far, there is no established treatment to this corneal infection. Diverse research studies have reported the efficacy of commercialized eye drops and ophthalmic solutions against the two life cycle stages of Acanthamoeba strains, that usually present preservatives such as Propylene Glycol of Benzalkonium chloride (BAK). These compounds present toxic effects in corneal cells, favouring the inflammatory response in the so sensitive eye tissue. In the present work we have evaluated the efficacy of nine proprietary ophthalmic solutions with and without preservatives (ASDA Dry Eyes Eyedrops, Miren®, ODM5®, Ectodol®, Systane® Complete, Ocudox®, Matrix Ocular®, Alins® and Coqun®) against the two life cycle stages of three Acanthamoeba strains. Our work has demonstrated the high anti-Acanthamoeba activity of Matrix Ocular®, which induces the programmed cell death mechanisms in Acanthamoeba spp. trophozoites. The high efficacy and the absence of ocular toxic effects of Matrix Ocular®, evidences the use of the Arabinogalactan derivatives as a new source of anti-AK compounds.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , Amebicidas , Ceratite por Acanthamoeba/tratamento farmacológico , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Galactanos , Humanos , Soluções Oftálmicas/uso terapêutico
10.
Expert Rev Anti Infect Ther ; 19(11): 1427-1441, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33929276

RESUMO

Introduction: Acanthamoeba encompasses several species of free-living ameba encountered commonly throughout the environment. Unfortunately, these species of ameba can cause opportunistic infections that result in Acanthamoeba keratitis, granulomatous amebic encephalitis, and occasionally systemic infection.Areas covered: This review discusses relevant literature found through PubMed and Google scholar published as of January 2021. The review summarizes current common Acanthamoeba keratitis treatments, drug discovery methodologies available for screening potential anti-Acanthamoeba compounds, and the anti-Acanthamoeba activity of various azole antifungal agents.Expert opinion: While several biguanide and diamidine antimicrobial agents are available to clinicians to effectively treat Acanthamoeba keratitis, no singular treatment can effectively treat every Acanthamoeba keratitis case.Efforts to identify new anti-Acanthamoeba agents include trophozoite cell viability assays, which are amenable to high-throughput screening. Cysticidal assays remain largely manual and would benefit from further automation development. Additionally, the existing literature on the effectiveness of various azole antifungal agents for treating Acanthamoeba keratitis is incomplete or contradictory, suggesting the need for a systematic review of all azoles against different pathogenic Acanthamoeba strains.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , Amebicidas , Ceratite por Acanthamoeba/tratamento farmacológico , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Azóis/farmacologia , Azóis/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos
11.
Int J Parasitol Drugs Drug Resist ; 15: 144-151, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33684885

RESUMO

The validation of anti-Acanthamoeba activity of commercial eye drops has gained a great interest recently and a growing number of commercials eye drop were evaluated for their aptitude to inhibit Acanthamoeba as a second pharmacological effect. In the present study, three different eye drops, commercializing in Spain, including TobraDex, Cusimolol and Colircusi antiedema have been tested in vitro against trophozoites and cysts stage of the facultative pathogen Acanthamoeba. The alamarBlue™ method was used to evaluate both trophocidal and cysticidal properties. The most active eye drops were tested for their impact on some programmed cell death features. We found out that the cells inhibition was strain and eye drop dependent, and 5% eye drop was able to eliminate both trophozoite and cyst stage of Acanthamoeba spp. A treatment of 24 h with 5% of TobraDex or Cusimolol was able to show DNA condensation, collapse in the mitochondrial membrane potential and reduction of the ATP level production in Acanthamoeba. We could assume that the present eye drops could induce programed cell death like process in Acanthamoeba via mitochondrial pathway.


Assuntos
Acanthamoeba , Amebicidas , Soluções Oftálmicas , Acanthamoeba/efeitos dos fármacos , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Soluções Oftálmicas/farmacologia , Soluções Oftálmicas/uso terapêutico , Trofozoítos
12.
Clin Transl Sci ; 14(3): 791-805, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33650319

RESUMO

Free-living amoebae (FLAs) are protozoa developing autonomously in diverse natural or artificial environments. The FLAs Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri represent a risk for human health as they can become pathogenic and cause severe cerebral infections, named granulomatous amoebic encephalitis (GAE), Balamuthia amoebic encephalitis (BAE), and primary amoebic meningoencephalitis (PAM), respectively. Additionally, Acanthamoeba sp. can also rarely disseminate to diverse organs, such as the skin, sinuses, or bones, and cause extracerebral disseminated acanthamebiasis (EDA). No consensus treatment has been established for cerebral FLA infections or EDA. The therapy of cerebral and disseminated FLA infections often empirically associates a large diversity of drugs, all exhibiting a high toxicity. Nevertheless, these pathologies lead to a high mortality, above 90% of the cases, even in the presence of a treatment. In the present work, a total of 474 clinical cases of FLA infections gathered from the literature allowed to determine the frequency of usage, as well as the efficacy of the main drugs and drug combinations used in the treatment of these pathologies. The efficacy of drug usage was determined based on the survival rate after drug administration. The most efficient drugs, drug combinations, and their mechanism of action were discussed in regard to the present recommendations for the treatment of GAE, EDA, BAE, and PAM. At the end, this review aims to provide a useful tool for physicians in their choice to optimize the treatment of FLA infections.


Assuntos
Amebíase/tratamento farmacológico , Amebicidas/uso terapêutico , Amoeba/efeitos dos fármacos , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Amebíase/mortalidade , Amebíase/parasitologia , Amebicidas/farmacologia , Amoeba/patogenicidade , Infecções Protozoárias do Sistema Nervoso Central/mortalidade , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Quimioterapia Combinada/métodos , Humanos , Taxa de Sobrevida , Resultado do Tratamento
13.
Exp Parasitol ; 218: 108008, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32979343

RESUMO

Acanthamoeba sp. is a free living amoeba that causes severe, painful and fatal infections, viz. Acanthamoeba keratitis and granulomatous amoebic encephalitis among humans. Antimicrobial chemotherapy used against Acanthamoeba is toxic to human cells and show side effects as well. Infections due to Acanthamoeba also pose challenges towards currently used antimicrobial treatment including resistance and transformation of trophozoites to resistant cyst forms that can lead to recurrence of infection. Therapeutic agents targeting central nervous system infections caused by Acanthamoeba should be able to cross blood-brain barrier. Nanoparticles based drug delivery put forth an effective therapeutic method to overcome the limitations of currently used antimicrobial chemotherapy. In recent years, various researchers investigated the effectiveness of nanoparticles conjugated drug and/or naturally occurring plant compounds against both trophozoites and cyst form of Acanthamoeba. In the current review, a reasonable effort has been made to provide a comprehensive overview of various nanoparticles tested for their efficacy against Acanthamoeba. This review summarizes the noteworthy details of research performed to elucidate the effect of nanoparticles conjugated drugs against Acanthamoeba.


Assuntos
Acanthamoeba/efeitos dos fármacos , Amebicidas/administração & dosagem , Nanopartículas/administração & dosagem , Acanthamoeba/crescimento & desenvolvimento , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/parasitologia , Amebíase/tratamento farmacológico , Amebíase/mortalidade , Amebíase/parasitologia , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Biguanidas/administração & dosagem , Biguanidas/farmacologia , Biguanidas/uso terapêutico , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Infecções Protozoárias do Sistema Nervoso Central/mortalidade , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Clorexidina/administração & dosagem , Clorexidina/farmacologia , Clorexidina/uso terapêutico , Sistemas de Liberação de Medicamentos , Imunocompetência , Hospedeiro Imunocomprometido , Encefalite Infecciosa/tratamento farmacológico , Encefalite Infecciosa/mortalidade , Encefalite Infecciosa/parasitologia , Nanopartículas/classificação , Nanopartículas/uso terapêutico , Trofozoítos/efeitos dos fármacos
14.
Parasitol Res ; 119(10): 3491-3502, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32886229

RESUMO

Amoebiasis is a human parasitic disease caused by Entamoeba histolytica. The parasite can invade the large intestine and other organs such as liver; resistance to the host tissue oxygen is a condition for parasite invasion and survival. Thioredoxin reductase of E. histolytica (EhTrxR) is a critical enzyme mainly involved in maintaining reduced the redox system and detoxifying the intracellular oxygen; therefore, it is necessary for E. histolytica survival under both aerobic in vitro and in vivo conditions. In the present work, it is reported that rabeprazole (Rb), a drug widely used to treat heartburn, was able to inhibit the EhTrxR recombinant enzyme. Moreover, Rb affected amoebic proliferation and several functions required for parasite virulence such as cytotoxicity, oxygen reduction to hydrogen peroxide, erythrophagocytosis, proteolysis, and oxygen and complement resistances. In addition, amoebic pre-incubation with sublethal Rb concentration (600 µM) promoted amoebic death during early liver infection in hamsters. Despite the high Rb concentration used to inhibit amoebic virulence, the wide E. histolytica pathogenic-related functions affected by Rb strongly suggest that its molecular structure can be used as scaffold to design new antiamoebic compounds with lower IC50 values.


Assuntos
Amebicidas/farmacologia , Entamoeba histolytica/efeitos dos fármacos , Entamoeba histolytica/patogenicidade , Inibidores Enzimáticos/farmacologia , Rabeprazol/farmacologia , Amebicidas/uso terapêutico , Animais , Cricetinae , Entamoeba histolytica/crescimento & desenvolvimento , Entamoeba histolytica/metabolismo , Entamebíase/parasitologia , Entamebíase/prevenção & controle , Inibidores Enzimáticos/uso terapêutico , Oxirredução/efeitos dos fármacos , Rabeprazol/uso terapêutico , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Virulência/efeitos dos fármacos
15.
Medicine (Baltimore) ; 99(27): e21112, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32629745

RESUMO

RATIONALE: Lupus miliaris disseminatus faciei (LMDF) is an inflammatory granulomatous skin disease without a clear etiology that frequently involves the middle area of the face and the upper eyelids. Pathological features of the disease include caseation necrosis and epithelioid granuloma. Consensus treatment for LMDF is currently unavailable. PATIENT CONCERNS: A 47-year-old Chinese female patient who presented with facial pruritic, erythematous papules 8 months before this study. She was diagnosed with skin tuberculosis at another hospital and given antituberculosis medication. However, the treatment was not efficacious. DIAGNOSES: In this study, the diagnosis of Demodex-induced LMDF was made by a dermatologist according to physical examination, skin biopsy pathology, and microscopic examination. INTERVENTIONS: The patient was given ornidazole tablets (500 mg twice a day) and recombinant bovine basic fibroblast growth factor gel (0.2 g/cm twice a day) for an 8-week period. OUTCOMES: Eight weeks after the treatment, the facial erythematous papules were improved, and no new skin lesions were observed. The patient showed no signs of recurrence during the 6-month follow-up. LESSONS SUBSECTIONS: This case showed that ornidazole combined with recombinant bovine basic fibroblast growth factor gel might be useful in treatment of Demodex-induced LMDF. In addition, the results suggested that pathological caseation necrosis was caused by a series of inflammatory and immune responses to Demodex infection.


Assuntos
Dermatoses Faciais/etiologia , Rosácea/parasitologia , Pele/parasitologia , Amebicidas/administração & dosagem , Amebicidas/uso terapêutico , Animais , Povo Asiático/etnologia , Erros de Diagnóstico , Dermatoses Faciais/patologia , Feminino , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/uso terapêutico , Granuloma/patologia , Humanos , Pessoa de Meia-Idade , Ácaros/parasitologia , Necrose/patologia , Ornidazol/administração & dosagem , Ornidazol/uso terapêutico , Rosácea/tratamento farmacológico , Pele/patologia , Pele/ultraestrutura , Resultado do Tratamento , Tuberculose Cutânea/diagnóstico , Tuberculose Cutânea/tratamento farmacológico
16.
Artigo em Inglês | MEDLINE | ID: mdl-32094126

RESUMO

Current treatments for Acanthamoeba keratitis rely on a combination of chlorhexidine gluconate, propamidine isethionate, and polyhexamethylene biguanide. These disinfectants are nonspecific and inherently toxic, which limits their effectiveness. Furthermore, in 10% of cases, recurrent infection ensues due to the difficulty in killing both trophozoites and double-walled cysts. Therefore, development of efficient, safe, and target-specific drugs which are capable of preventing recurrent Acanthamoeba infection is a critical unmet need for averting blindness. Since both trophozoites and cysts contain specific sets of membrane sterols, we hypothesized that antifungal drugs targeting sterol 14-demethylase (CYP51), known as conazoles, would have deleterious effects on A. castellanii trophozoites and cysts. To test this hypothesis, we first performed a systematic screen of the FDA-approved conazoles against A. castellanii trophozoites using a bioluminescence-based viability assay adapted and optimized for Acanthamoeba The most potent drugs were then evaluated against cysts. Isavuconazole and posaconazole demonstrated low nanomolar potency against trophozoites of three clinical strains of A. castellanii Furthermore, isavuconazole killed trophozoites within 24 h and suppressed excystment of preformed Acanthamoeba cysts into trophozoites. The rapid action of isavuconazole was also evident from the morphological changes at nanomolar drug concentrations causing rounding of trophozoites within 24 h of exposure. Given that isavuconazole has an excellent safety profile, is well tolerated in humans, and blocks A. castellanii excystation, this opens an opportunity for the cost-effective repurposing of isavuconazole for the treatment of primary and recurring Acanthamoeba keratitis.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Amebicidas/farmacologia , Antifúngicos/farmacologia , Nitrilas/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/uso terapêutico , Acanthamoeba castellanii/crescimento & desenvolvimento , Amebíase/tratamento farmacológico , Amebíase/parasitologia , Amebicidas/uso terapêutico , Animais , Antifúngicos/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Nitrilas/uso terapêutico , Piridinas/uso terapêutico , Triazóis/uso terapêutico , Trofozoítos/efeitos dos fármacos
17.
Gac Med Mex ; 155(Suppl 1): S22-S27, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31638607

RESUMO

INTRODUCTION: In Mexico, seroprevalence of Entamoeba histolytica is 8.4%. The intestinal amebiasis in patients with acute leukemia of novo, after the start of chemotherapy (CT) in the Hematology Service of the CMN 20 de Noviembre is 12%, even if patients show a negative baseline coprological test. OBJECTIVE: To find out if the administration of tinidazole, in patients with acute leukemia and negative coprological test, at the beginning of the CT, decreases the incidence of amoebic colitis during the induction to remission. METHOD: Prospective and not comparative study. Patients with de novo diagnosis of acute leukemia who initiate induction and initial coprological CT. Tinidazole was indicated, 2 g/day for 5 days in the first week of CT started. They were monitored until the induction was concluded and hematopoietic recovery started. RESULTS: 38 patients, 15 women and 23 men with a mean age of 44 years (16-72), with acute lymphoblastic leukemia 19, myeloblastic 16 and promyelocytic 3. Cases without and with intestinal amebiasis were 35 and 3, respectively. Patients with amebiasis only received tinidazole for 3 days and it was given 2 days after the CT started. CONCLUSION: Tinidazole, in patients with acute de novo leukemia who initiate induction CT, is effective in the prevention of intestinal amebiasis, during the induction stage, if administered at 2 g/day, for five days, starting on day 1 of the CT.


Assuntos
Amebicidas/uso terapêutico , Disenteria Amebiana/prevenção & controle , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Tinidazol/uso terapêutico , Adolescente , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Disenteria Amebiana/parasitologia , Feminino , Humanos , Quimioterapia de Indução/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
18.
Sci Rep ; 9(1): 11651, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406269

RESUMO

Recently, the search for novel therapeutic agents against Acanthamoeba species has been focused on the evaluation of natural resources. Among them, marine microorganisms have risen as a source of bioactive compounds with the advantage of the ability to obtain unlimited and constant amounts of the compounds in contrast to other natural sources such as plants. Furthermore, marine actinomycetes have recently been reported as highly rich in bioactive agents including salinosporamides, xiamycines, indolocarbazoles, naphtyridines, phenols, dilactones such as antimycines and macrolides among others. In this study, staurosporine (STS) was isolated from a strain of Streptomyces sanyensis and tested against Acanthamoeba to characterize the therapeutic potential of STS against this protozoan parasite. We have established that STS is active against both stages of the Acanthamoeba life cycle, by the activation of Programmed Cell Death via the mitochondrial pathway of the trophozoite. We have also established that STS has relatively low toxicity towards a macrophage cell line. However, previous studies have highlighted higher toxicity levels induced on other vertebrate cell lines and future research to lower these toxicity issues should be developed.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Amebicidas/farmacologia , Organismos Aquáticos/química , Estaurosporina/farmacologia , Streptomyces/química , Acanthamoeba castellanii/citologia , Amebíase/tratamento farmacológico , Amebíase/parasitologia , Amebicidas/isolamento & purificação , Amebicidas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Humanos , Macrófagos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Estaurosporina/isolamento & purificação , Estaurosporina/uso terapêutico , Testes de Toxicidade Aguda , Trofozoítos/citologia , Trofozoítos/efeitos dos fármacos
19.
Indian J Med Microbiol ; 37(1): 120-122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31424023

RESUMO

Primary amoebic meningoencephalitis is rare but fatal disease encountered in immunocompetent individuals. Here, we present a case of a previously healthy 8-month-old female child, who presented with features of meningoencephalitis of 2 days' duration. Rapidly moving trophozoites of amoeba were observed in cerebrospinal fluid, which were confirmed to be Naegleria fowleri on polymerase chain reaction. Broad-spectrum antimicrobial therapy with ceftriaxone, vancomycin, amphotericin B and acyclovir was initiated. However, the patient deteriorated and left the hospital against medical advice. The isolation of N. fowleri in this case demands for increased awareness for prompt diagnosis and management in view of its high mortality.


Assuntos
Amebíase/diagnóstico , Amebicidas/uso terapêutico , Infecções Protozoárias do Sistema Nervoso Central/diagnóstico , Meningoencefalite/parasitologia , Naegleria fowleri/isolamento & purificação , Aciclovir/uso terapêutico , Amebíase/tratamento farmacológico , Anfotericina B/uso terapêutico , Ceftriaxona/uso terapêutico , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Líquido Cefalorraquidiano/parasitologia , Feminino , Humanos , Lactente , Meningoencefalite/diagnóstico , Meningoencefalite/tratamento farmacológico , Naegleria fowleri/genética , Trofozoítos/isolamento & purificação , Vancomicina/uso terapêutico
20.
Ann Ital Chir ; 82019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31148546

RESUMO

Splenic abscess is a rare condition, which is often asymptomatic in the absence of comorbidity and is associated with high mortality rates. Given the importance of the differential diagnosis of patients who present to the emergency department with fever or septic shock, we report the case of a patient with amoebic splenic abscess who presented to our clinic with widespread skin rash and signs of septic shock following amoebic dysentery caused by Entamoeba histolytica, which is rarely reported in the literature. KEY WORDS: Amoebic Spleen Abscess, Amoebic Abscess, Entamoeba Histolytica, Splenic Abscess.


Assuntos
Abscesso/etiologia , Disenteria Amebiana/complicações , Entamoeba histolytica/isolamento & purificação , Esplenopatias/etiologia , Abscesso/parasitologia , Abscesso/cirurgia , Adulto , Amebicidas/uso terapêutico , Antibacterianos/uso terapêutico , Bacteriemia/complicações , Bacteriemia/tratamento farmacológico , Terapia Combinada , Infecção Hospitalar/complicações , Infecção Hospitalar/tratamento farmacológico , Humanos , Masculino , Metronidazol/uso terapêutico , Púrpura/etiologia , Choque Séptico/etiologia , Esplenectomia , Esplenopatias/parasitologia , Esplenopatias/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...